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The Long-Baseline Neutrino Experiment (LBNE) will provide a unique, world-leading pro-
gram for the exploration of key questions at the forefront of particle physics and astro-
physics.

Chief among its potential discoveries is that of matter-antimatter symmetry violation in neu-
trino flavor mixing — a step toward unraveling the mystery of matter generation in the early
Universe. Independently, determination of the neutrino mass ordering and precise measure-
ment of neutrino mixing parameters by LBNE may reveal new fundamental symmetries of
Nature.

To achieve its ambitious physics objectives as a world-class facility, LBNE has been con-
ceived around three central components:

1. an intense, wide-band neutrino beam

2. a fine-grained near neutrino detector just downstream of the neutrino source

3. a massive liquid argon time-projection chamber (LArTPC) deployed as a far neutrino
detector deep underground, 1,300 km downstream; this distance between the neutrino
source and far detector — the baseline — is measured along the line of travel through
the Earth

The neutrino beam and near detector will be installed at the Fermi National Accelerator
Laboratory (Fermilab), in Batavia, Illinois. The far detector will be installed at the Sanford
Underground Research Facility in Lead, South Dakota.

The location of its massive high-resolution far detector deep underground will enable LBNE
to significantly expand the search for proton decay as predicted by Grand Unified Theories,
as well as study the dynamics of core-collapse supernovae through observation of their
neutrino bursts, should any occur in our galaxy during LBNE’s operating lifetime.

The near neutrino detector will enable high-precision measurements of neutrino oscillations,
thereby enhancing the sensitivity to matter-antimatter symmetry violations and will exploit
the potential of high-intensity neutrino beams as probes of new physics.

With its extensively developed design and flexible configuration, LBNE provides a blueprint
for an experimental program made even more relevant by recent neutrino mixing parameter
measurements.
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To achieve the transformative physics goals of LBNE in an era of highly constrained funding
for basic research in the U.S., the conceptual design has evolved so as to provide a scalable,
phased and global approach, while maintaining a U.S. leadership role as the host for a global
facility. International partnerships are being actively pursued to both enhance and accelerate
the LBNE Project.

LBNE’s primary beamline is designed to operate initially with a beam power of 1.2 MW,
upgradable to 2.3 MW. This beamline extracts protons with energies from 60 to 120 GeV
from the Fermilab Main Injector. The protons collide with a target to generate a secondary
beam of charged particles, which in turn decay to generate the neutrino beam.

The liquid argon TPC far detector technology combines fine-grained tracking with total
absorption calorimetry. Installed 4,850 ft underground to minimize backgrounds, this detec-
tor will be a powerful tool for long-baseline neutrino oscillation physics and underground
physics such as proton decay, supernova neutrinos and atmospheric neutrinos. The far de-
tector design is scalable and flexible, allowing for a phased approach, with an initial fiducial
mass of at least 10 kt and a final configuration of at least 34 kt.

A high-precision near detector is planned as a separate facility allowing maximal flexibility
in phasing and deployment.
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The technologies and configuration of the planned LBNE facilities offer excellent sensitivity
to a range of physics processes:

◦ The muon-neutrino (νµ) beam produced at Fermilab with a peak flux at 2.5 GeV,
coupled to the baseline of 1,300 km, will present near-optimal sensitivity to neu-
trino/antineutrino charge-parity (CP) symmetry violation effects.

◦ The long baseline of LBNE will ensure a large matter-induced asymmetry in the os-
cillations of neutrinos and antineutrinos, thus providing a clear, unambiguous deter-
mination of the mass ordering of the neutrino states.

◦ The near detector located just downstream of the neutrino beamline at Fermilab will
enable high-precision long-baseline oscillation measurements as well as precise mea-
surements and searches for new phenomena on its own using the high-intensity neu-
trino beam.

◦ The deep-underground LArTPC far detector will provide superior sensitivities to pro-
ton decay modes with kaons in the final states, modes that are favored by many Grand
Unified and supersymmetric theoretical models.

◦ Liquid argon as a target material will provide unique sensitivity to the electron-
neutrino (νe) component of the initial burst of neutrinos from a core-collapse super-
nova.

◦ The excellent energy and directional resolution of the LArTPC will allow novel physics
studies with atmospheric neutrinos.

1
1

The LBNE physics program has been identified as a priority of the global HEP community
for the coming decades. The facilities available in the U.S. are the best suited internationally
to carry out this program and the substantially developed LBNE design is at the forefront
of technical innovations in the field. Timely implementation of LBNE will significantly
advance the global HEP program and assure continued intellectual leadership for the U.S.
within this community.
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The Standard Model of particle physics describes all of the known fundamental particles
and the electroweak and strong forces that, in combination with gravity, govern today’s
Universe. The observation that neutrinos have mass is one demonstration that the Standard
Model is incomplete. By exploring physics beyond the Standard Model, LBNE will address
fundamental questions about the Universe:

What is the origin of the matter-antimatter asymmetry in the Universe? Immediately af-
ter the Big Bang, matter and antimatter were created equally, yet matter now domi-
nates. By studying the properties of neutrino and antineutrino oscillations, LBNE is
pursuing the most promising avenue for understanding this asymmetry.

What are the fundamental underlying symmetries of the Universe? Resolution by LBNE
of the detailed mixing patterns and ordering of neutrino mass states, and comparisons
to the corresponding phenomena in the quark sector, could reveal underlying symme-
tries that are as yet unknown.

Is there a Grand Unified Theory of the Universe? Experimental evidence hints that the
physical forces observed today were unified into one force at the birth of the Universe.
Grand Unified Theories (GUTs), which attempt to describe the unification of forces,
predict that protons should decay, a process that has never been observed. LBNE will
probe proton lifetimes predicted by a wide range of GUT models.

How do supernovae explode? The heavy elements that are the key components of life —
such as carbon — were created in the super-hot cores of collapsing stars. LBNE’s
design will enable it to detect the neutrino burst from core-collapse supernovae. By
measuring the time structure and energy spectrum of a neutrino burst, LBNE will be
able to elucidate critical information about the dynamics of this special astrophysical
phenomenon.

What more can LBNE discover about the Standard Model? The high intensity of the
LBNE neutrino beam will provide a unique probe for precision tests of Standard
Model processes as well as searches for new physics in unexplored regions.

3
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Results from the last decade, indicating that the three known types of neutrinos have nonzero
mass, mix with one another and oscillate between generations, imply physics beyond the
Standard Model

Mohapatra:2005wg
[42]. Each of the three flavors of neutrinos, νe, νµ and ντ (Figure

fig:standardmodel
2.1),

is known to be a different mix of three mass eigenstates ν1, ν2 and ν3 (Figure
fig:pmns
2.2). In the

Standard Model, the simple Higgs mechanism, which has now been confirmed by the obser-
vation of the Higgs boson

Aad:2012tfa,Chatrchyan:2012ufa
[43,44], is responsible for both quark and lepton masses, mixing

and charge-parity (CP) violation (the mechanism responsible for matter-antimatter asym-
metries). However, the small size of neutrino masses and their relatively large mixing bears
little resemblance to quark masses and mixing, suggesting that different physics — and pos-
sibly different mass scales — in the two sectors may be present, and motivating precision
study of mixing and CP violation in the lepton sector.

5

6

The relationship between the three mixing angles θ12, θ23, and θ13 and the mixing between
the neutrino flavor and mass states can be described as follows

neutrinomatrix
[45]:

tan2 θ12 : amount of νe in ν2

amount of νe in ν1
(2.1)

tan2 θ23 : ratio of νµ to ντ in ν3 (2.2)

sin2 θ13 : amount of νe in ν3 (2.3)

The frequency of neutrino oscillation among the weak-interaction (flavor) eigenstates de-
pends on the difference in the squares of the neutrino masses, ∆m2

ij ≡ m2
i −m2

j ; a set of
three neutrino mass states implies two independent mass-squared differences (∆m2

21 and
∆m2

32). The ordering of the mass states is known as the neutrino mass hierarchy. An order-
ing of m1 < m2 < m3 is known as the normal hierarchy since it matches the ordering of
the quarks in the Standard Model, whereas an ordering of m3 < m1 < m2 is referred to as
the inverted hierarchy.

Since each flavor eigenstate is a mixture of three mass eigenstates, there can be an overall
phase difference between the quantum states, referred to as δCP. A nonzero value of this
phase implies that neutrinos and antineutrinos oscillate differently — a phenomenon known
as charge-parity (CP) violation. δCP is therefore often referred to as the CP phase or the
CP-violating phase.

7
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Recent theoretical advances have demonstrated that CP violation, necessary for the gener-
ation of the Baryon Asymmetry of the Universe at the GUT scale (baryogenesis), can be
directly related to the low-energy CP violation in the lepton sector that could manifest in
neutrino oscillations. As an example, the theoretical model described in

Pascoli:2006ci
[68] predicts that

leptogenesis, the generation of the analogous lepton asymmetry, can be achieved if

| sin θ13 sin δCP| & 0.11 (2.4) eqn:leptogenesis

This implies | sin δCP| & 0.7 given the latest global fit value of | sin θ13|
Capozzi:2013csa
[69].

9
10

The significant impact of the matter effect on the νµ → νe and νµ → νe oscillation probabil-
ities at longer baselines (Figures

fig:oscnodes1a
2.3 and

fig:oscnodes1b
2.4) implies that νe appearance measurements over

long distances through the Earth provide a powerful probe into the neutrino mass hierarchy
question: is m1 > m3 or vice-versa?

11
12

Studying νµ disappearance probes sin2 2θ23 and |∆m2
32| with very high precision. Disap-

pearance measurements can therefore determine whether νµ-ντ mixing is maximal or near
maximal such that sin2 2θ23 = 1, but they cannot resolve the octant of θ23 if νµ-ντ mixing is
less than maximal. Combining the νµ disappearance signal with the νe appearance signal can
help determine the θ23 octant and constrain some of the theoretical models of quark-lepton
universality.

13
14

Searches for proton decay, bound-neutron decay and similar processes such as di-nucleon
decay and neutron-antineutron oscillations test the apparent but unexplained conservation
law of baryon number. These decays are already known to be rare based on decades of prior
searches, all of which have produced negative results. If measurable event rates or even a
single-candidate event were to be found, it would be sensible to presume that they occurred
via unknown virtual processes based on physics beyond the Standard Model. The impact of
demonstrating the existence of a baryon-number-violating process would be profound.

15
16

The observation of even a single unambiguous proton decay event would corroborate the
idea of unification and the signature of the decay would give strong guidance as to the
nature of the underlying theory.

17
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The expected rate of core-collapse supernovae is two to three per century in the Milky
Way

Tammann:1994ev,Cappellaro:1999qy
[108,109]. In a 20-year experimental run, LBNE’s probability of observing neutrinos

from a core-collapse supernova in the Milky Way is about 40%. The detection of thousands
of supernova-burst neutrinos from this event would dramatically expand the science reach of
the experiment, allowing observation of the development of the explosion in the star’s core
and probing the equation-of-state of matter at nuclear densities. In addition, independent
measurements of the neutrino mass hierarchy and the θ13 mixing angle are possible, as well
as additional constraints on physics beyond the Standard Model.

Each of the topics that can be addressed by studying supernova-burst neutrinos represent
important outstanding problems in modern physics, each worthy of a separate, dedicated
experiment, and the neutrino physics and astrophysics communities would receive payback
simultaneously. The opportunity of targeting these topics in a single experiment is very
attractive, especially since it may come only at incremental cost to the LBNE Project.

19
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The LBNE Project was formed to design and construct the Long-Baseline Neutrino Exper-
iment. The experiment will comprise a new, high-intensity neutrino source generated from
a megawatt-class proton accelerator at Fermi National Accelerator Laboratory (Fermilab)
directed at a large far detector at the Sanford Underground Research Facility in Lead, SD.
A near detector will be located about 500 m downstream of the neutrino production target.
LBNE is currently planned as a phased program, with increased scientific capabilities at
each phase.

◦ The experimental facilities are designed to meet the primary scientific objectives of
the experiment: (1) fully characterize neutrino oscillations, including measuring the
value of the unknown CP-violating phase, δCP, and determining the ordering of the
neutrino mass states, (2) significantly improve proton decay lifetime limits, and (3)
measure the neutrino flux from potential core-collapse supernovae in our galaxy.

◦ The LBNE beamline, based on the existing Neutrinos at the Main Injector (NuMI)
beamline design, is designed to deliver a wide-band, high-purity νµ beam with a peak
flux at 2.5 GeV, which optimizes the oscillation physics potential at the 1,300-km
baseline. The beamline will operate initially at 1.2 MW and will be upgradable to
2.3 MW utilizing a proton beam with energy tunable from 60 to 120 GeV.

◦ The full-scope LBNE far detector is a liquid argon time-projection chamber (LArTPC)
of fiducial mass 34 kt.

The TPC design is modular, allowing flexibility in the choice of initial detector size.

◦ The LBNE far detector will be located 4,850 feet underground, a depth favorable
for LBNE’s search for proton decay and detection of the neutrino flux from a core-
collapse supernova.

◦ The high-precision near detector and its conventional facilities can be built as an in-
dependent project, at the same time as the far detector and beamline, or later.

22
23

The 1,300-km baseline has been determined to provide optimal sensitivity to CP violation
and the measurement of δCP, and is long enough to enable an unambiguous determination
of the neutrino mass hierarchy

Bass:2013vcg
[83].

24
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Fermilab, located 40 miles west of Chicago, Illinois, is a DOE-funded laboratory dedicated
to high energy physics. The laboratory builds and operates accelerators, detectors and other
facilities that physicists from all over the world use to carry out forefront research.

Dramatic discoveries in high energy physics have revolutionized our understanding of the
interactions of the particles and forces that determine the nature of matter in the Universe.
Two major components of the Standard Model of Fundamental Particles and Forces were
discovered at Fermilab: the bottom quark (May-June 1977) and the top quark (February
1995). In July 2000, Fermilab experimenters announced the first direct observation of the
tau neutrino, thus filling the final slot in the lepton sector of the Standard Model. Run II
of the Fermilab Tevatron Collider was inaugurated in March 2001. The Tevatron was the
world’s highest-energy particle accelerator and collider until the Large Hadron Collider at
CERN came online in 2011.

While CERN now hosts the world’s highest-energy particle collider, the Fermilab acceler-
ator complex is being retooled to produce the world’s highest-intensity beams of protons,
muons and neutrinos. Scientists from around the world can exploit this capability to pursue
cutting-edge research in the lepton sector of the Standard Model where strong hints of new
physics have surfaced.

The beamline and near detector for LBNE will be constructed at Fermilab, referred to as the
Near Site.

26

27

The Sanford Underground Research Facility
SURF
[119] is a laboratory located on the site of the

former Homestake gold mine in Lead, SD that is dedicated to underground science. This
laboratory has been selected as the location of the far detector for LBNE, and is referred to
as the Far Site.

Underground neutrino experiments in the former mine date back to 1967 when nuclear
chemist Ray Davis installed a solar neutrino experiment 4,850 feet below the surface

Cleveland:1998nv
[120].

Ray Davis earned a share of the Nobel Prize for physics in 2002 for his experiment, which
ran until 1993.

LBNE is envisioned as the next-generation, multi-decade neutrino experiment at this site
seeking groundbreaking discoveries.

28
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The LBNE neutrino beamline, located at Fermilab, utilizes a conventional horn-focused
neutrino beam produced from pion decay-in-flight, based largely on the highly successful
NuMI beamline design:

◦ The primary beam utilizes 60- to 120-GeV protons from the Main Injector accelerator.
The primary beamline is embedded in an engineered earthen embankment — a novel
construction concept to reduce costs and improve radiological controls.

◦ The beamline is designed to operate at 1.2 MW and to support an upgrade to 2.3-MW
operation.

◦ The beamline will generate a wide-band, high-purity beam, selectable for muon neu-
trinos or muon antineutrinos. Its tunable energies from 60 to 120 GeV will be well
matched to the 1,300-km neutrino oscillation baseline.

30
31

A high-resolution near neutrino detector located approximately 500 m downstream of the
LBNE neutrino production target, as shown in Figure

v-beam-fig:intro_elev_overview
3.16, is a key component of the full

LBNE scientific program:

◦ The near neutrino detector will enable the LBNE experiment to achieve its primary
scientific goals — in particular discovery-level sensitivity to CP violation and high-
precision measurements of the neutrino oscillation parameters, including the unknown
CP-violating phase, δCP.

◦ A rich program of LBNE physics measurements at the near detector will exploit the
potential of high-intensity neutrino beams as probes of new physics.

32
33

The full-scope LBNE far detector is a liquid argon time-projection chamber of fiducial
mass 34 kt located at the 4,850-ft level of the Sanford Underground Research Facility. The
LArTPC technology allows for high-precision identification of neutrino flavors, offers ex-
cellent sensitivity to proton decay modes with kaons in the final state and provides unique
sensitivity to electron neutrinos from a core-collapse supernova. The full detector size and
its location at a depth of 4,850 feet will enable LBNE to meet the primary scientific goals —
in particular, to find evidence for CP violation over a large range of δCP values, and to signif-
icantly advance proton-decay lifetime limits. Conceptual designs of the 34-kt underground
detector are well developed.

34
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◦ The far detector for the initial phase of LBNE will have fiducial mass of at least 10 kt.
This mass allows for high probability determination of the neutrino mass hierarchy
and can provide evidence for CP violation, if this effect is large.

◦ The detector needs to be located deep underground to provide sensitivity for proton
decay searches in the kaon modes and for measuring neutrinos from potential super-
novae in the galaxy.

◦ A conceptual design for a 10-kt LArTPC has been developed, thoroughly reviewed
and found to be sound.

◦ LBNE is working with international partners in an effort to deploy a more massive far
detector in the initial phase.

36
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LBNE is designed to address the science of neutrino oscillations with superior sensitivity to
many mixing parameters in a single experiment, in particular,

1. precision measurements of the parameters that govern νµ → νe and νµ → νe oscil-
lations; this includes precision measurement of the third mixing angle θ13, measure-
ment of the CP-violating phase δCP, and determination of the mass ordering (the sign
of ∆m2

32)

2. precision measurements of sin2 2θ23 and |∆m2
32| in the νµ/νµ disappearance channel

3. determination of the θ23 octant using combined precision measurements of the νe/νe
appearance and νµ/νµ disappearance channels

4. search for nonstandard physics that can manifest itself as differences in higher-precision
measurements of νµ and νµ oscillations over long baselines

39

40

LBNE will be definitive in its ability to discriminate between normal and inverted mass
hierarchy for the allowed range of unknown parameters such as δCP and sin2 θ23. To assess
the sensitivity of LBNE to this physics, particularly for the case of less favorable parameter
values, detailed understanding of statistical significance is essential.

At the true values of δCP for which the mass hierarchy asymmetry is maximally offset by the
leptonic CP asymmetry, LBNE’s sensitivity to the mass hierarchy is at its minimum. Even
in this case, with a 34-kt LArTPC operating for six years in a 1.2-MW beam, the |∆χ2|
value obtained in a typical data set will exceed 25, allowing LBNE on its own to rule out the
incorrect mass ordering at a confidence level above 1−3.7×10−6. Considering fluctuations,
LBNE will measure, in ≥ 97.5% of all possible data sets for this least favorable scenario, a
value of |∆χ2| equal to 9 or higher, which corresponds to a ≥ 99% probability of ruling out
the incorrect hierarchy hypothesis.

41
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Assuming the normal hierarchy, the most recent global fit of experimental data for the three-
neutrino paradigm favors a value of δCP close to−π/2 with sin δCP < 0 at a confidence level
of ∼ 90%

Capozzi:2013csa
[69] (Figure

fig:octchisq
4.15). LBNE alone with a 10-kt detector and six years of running

would resolve with ≥ 3σ precision the question of whether CP is violated for the currently
favored value of δCP. With a 34-kt detector running for six years, LBNE, alone will achieve
a precision approaching 6σ.

2

3

With sufficient exposure, LBNE can resolve the θ23 octant with > 3σ significance even if
θ23 is within a few degrees of 45◦, the value at which the mixing between the νµ and ντ
neutrino states is maximal.

4

5

Atmospheric neutrinos are unique among sources used to study oscillations: the flux con-
tains neutrinos and antineutrinos of all flavors, matter effects play a significant role, both
∆m2 values contribute, and the oscillation phenomenology occurs over several orders of
magnitude each in energy (Figure

fig:atmflux
2.8) and path length. These characteristics make atmo-

spheric neutrinos ideal for the study of oscillations (in principle sensitive to all of the re-
maining unmeasured quantities in the PMNS matrix) and provide a laboratory in which
to search for exotic phenomena for which the dependence of the flavor-transition and sur-
vival probabilities on energy and path length can be defined. The large LBNE LArTPC
far detector, placed at sufficient depth to shield against cosmic-ray background, provides
a unique opportunity to study atmospheric neutrino interactions with excellent energy and
path-length resolutions.

6

7

In the region of δCP where the LBNE neutrino-beam-only analysis is least sensitive to the
mass hierarchy, atmospheric neutrinos measured in the same experiment offer comparable
sensitivity. The combined beam and atmospheric neutrino sensitivity to the mass hierarchy
is |

√
∆χ2| > 6 for all values of δCP (sin2 θ23 = 0.4) in a 34-kt detector, assuming a 1.2-MW

beam running for ten years. It is important to note that the combined sensitivity is better than
the sum of the separate ∆χ2 values, as the atmospheric data help to remove degeneracies in
the beam data.

8
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Due to the very small masses and large mixing of neutrinos, their oscillations over a long
distance act as an exquisitely precise interferometer with high sensitivity to very small per-
turbations caused by new physics phenomena, such as:

◦ nonstandard interactions in matter that manifest in long-baseline oscillations as devi-
ations from the three-flavor mixing model

◦ new long-distance potentials arising from discrete symmetries that manifest as small
perturbations on neutrino and antineutrino oscillations over a long baseline

◦ sterile neutrino states that mix with the three known active neutrino states

◦ large compactified extra dimensions from String Theory models that manifest through
mixing between the Kaluza-Klein states and the three active neutrino states

Full exploitation of LBNE’s sensitivity to such new phenomena will require higher-precision
predictions of the unoscillated neutrino flux at the far detector and large exposures.

10
11

With tight control of systematics, LBNE will reach 5σ sensitivity to CP violation for a
large fraction of δCP values. LBNE delivers the best resolution of the value of δCP with the
lowest combination of power-on-target and far detector mass when compared to other future
proposed neutrino oscillation experiments (Figure

fig:cpvcomp
4.33).

12
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Baryon number conservation is an unexplained symmetry in the Universe with deep con-
nections to both cosmology and particle physics. As one of the conditions underlying the
observed matter-antimatter asymmetry of the Universe, baryon number should be violated.
Nucleon decay, which is a manifestation of baryon number violation, is a hallmark of many
Grand Unified Theories (GUTs), theories that connect quarks and leptons in ways not en-
visioned by the Standard Model. Observation of proton or bound-neutron decay would pro-
vide a clear experimental signature of baryon number violation.

Predicted rates for nucleon decay based on GUTs are uncertain but cover a range directly
accessible with the next generation of large underground detectors. LBNE, configured with
its massive, deep-underground LArTPC far detector, offers unique opportunities for the
discovery of nucleon decay, with sensitivity to key decay channels an order of magnitude
beyond that of the current generation of experiments.

15
16

The LBNE LArTPC’s superior detection efficiencies for decay modes that produce kaons
will outweigh its relatively low mass compared with multi-hundred-kiloton water Cherenkov
detectors. Because the LArTPC can reconstruct protons that are below Cherenkov threshold,
it can reject many atmospheric-neutrino background topologies by vetoing on the presence
of a recoil proton. Due to its excellent spatial resolution, it also performs better for event
topologies with displaced vertices, such as p → K+ν (for multi-particle K+ decay topolo-
gies) and p→ K0µ+. The latter mode is preferred in some SUSY GUTs.

17
18

Figure
fig:kdklimit
5.4 demonstrates that to improve the current limits on the p → νK+, set by Super–

Kamiokande, significantly beyond that experiment’s sensitivity, a LArTPC detector of at
least 10 kt, installed deep underground, is needed. A 34-kt detector will improve the current
limits by an order of magnitude after running for two decades. Clearly a larger detector mass
would improve the limits even more in that span of time.

19
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Neutrinos emitted in the first few seconds of a core-collapse supernova carry with them
the potential for great insight into the mechanisms behind some of the most spectacular
events that have played key roles in the evolution of the Universe. Collection and analysis
of this high-statistics neutrino signal from a supernova within our galaxy would provide a
rare opportunity to witness the energy and flavor development of the burst as a function of
time. This would in turn shed light on the astrophysics of the collapse as well as on neutrino
properties.

22

23

A number of astrophysical phenomena associated with supernovae are expected to be ob-
servable in the supernova-neutrino signal, providing a remarkable window into the event,
for example:

◦ The initial burst, primarily composed of νe and called the neutronization or breakout
burst, represents only a small component of the total signal. However, oscillation
effects can manifest in an observable manner in this burst, and flavor transformations
can be modified by the halo of neutrinos generated in the supernova envelope by
scattering

Cherry:2013mv
[209].

◦ The formation of a black hole would cause a sharp signal cutoff (e.g.,
Beacom:2000qy,Fischer:2008rh
[210,211]).

◦ Shock wave effects (e.g.,
Schirato:2002tg
[212]) would cause a time-dependent change in flavor and

spectral composition as the shock wave propagates.

◦ The standing accretion shock instability (SASI)
Hanke:2011jf,Hanke:2013ena
[213,214], a sloshing mode predicted

by 3D neutrino-hydrodynamics simulations of supernova cores, would give an oscil-
latory flavor-dependent modulation of the flux.

◦ Turbulence effects
Friedland:2006ta,Lund:2013uta
[215,216] would also cause flavor-dependent spectral modification

as a function of time.
24

25
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LBNE, with its high-resolution LArTPC far detector, is uniquely sensitive to the νe compo-
nent of the neutrino flux from a core-collapse supernova within our galaxy. The νe com-
ponent of the neutrino flux dominates the initial neutronization burst of the supernova.
Preliminary studies indicate that such a supernova at a distance of 10 kpc would produce
∼3,000 events in a 34-kt LArTPC. The time dependence of the signal will allow differenti-
ation between different neutrino-driven core-collapse dynamical models, and will exhibit a
discernible dependence on the neutrino mass hierarchy.

A low energy threshold of ∼ 5 MeV will enable the detector to extract the rich information
available from the νe supernova flux. LBNE’s photon detection system is being designed to
provide a high-efficiency trigger for supernova events. Careful design and quality control
of the detector materials will minimize low-energy background from radiological contami-
nants.

26
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The LBNE near neutrino detector provides scientific value beyond its essential role of cal-
ibrating beam and neutrino interaction properties for the long-baseline physics program
described in Chapter

nu-oscil-chap
4. By virtue of the theoretically clean, purely weak leptonic processes

involved, neutrino beams have historically served as unique probes for new physics in their
interactions with matter. The high intensity and broad energy range of the LBNE beam will
open the door for a highly capable near detector to perform its own diverse program of
incisive investigations.

29

1

Neutrinos and antineutrinos are the most effective probes for investigating electroweak
physics. Interest in a precise determination of the weak mixing angle (sin2 θW ) at LBNE
energies via neutrino scattering is twofold: (1) it provides a direct measurement of neutrino
couplings to the Z boson and (2) it probes a different scale of momentum transfer than LEP
did by virtue of not being at the Z boson mass peak.

2

3

The strange-quark content of the proton and its contribution to the proton spin remain enig-
matic

Jaffe:1989jz
[260]. The question is whether the strange quarks contribute substantially to the vector

and axial-vector currents of the nucleon. A large observed value of the strange-quark con-
tribution to the nucleon spin (axial current), ∆s, would enhance our understanding of the
proton structure.

The spin structure of the nucleon also affects the couplings of axions and supersymmetric
particles to dark matter.

4

5
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Precision measurements of (anti)neutrino differential cross sections in the LBNE near de-
tector will provide additional constraints on several key nucleon structure functions that are
complementary to results from electron scattering experiments.

In addition, these measurements would directly improve LBNE’s oscillation measurements
by providing accurate simulation of neutrino interactions in the far detector and offer an
estimate of all background processes that are dependent upon the angular distribution of
the outgoing particles in the far detector. Furthermore, certain QCD analyses — i.e., global
fits used for extraction of parton distribution functions (PDFs) via the differential cross sec-
tions measured in ND data — would constrain the systematic error in precision electroweak
measurements. This would apply not only in neutrino physics but also in hadron collider
measurements.

6
7

One of the most compelling physics topics accessible to LBNE’s high-resolution near detec-
tor is the isospin physics using neutrino and antineutrino interactions. This physics involves
the Adler sum rule and tests isospin (charge) symmetry in nucleons and nuclei.

8
9

The most economical way to handle the problems of neutrino masses, dark matter and the
Baryon Asymmetry of the Universe in a unified way may be to add to the Standard Model
(SM) three Majorana singlet fermions with masses roughly on the order of the masses of
known quarks and leptons using the seesaw mechanism

Yanagida:1980xy
[67]. The appealing feature of this

theory (called the νMSM for Neutrino Minimal SM)
Asaka:2005pn
[285] is that every left-handed fermion

has a right-handed counterpart, leading to a consistent way of treating quarks and leptons.

The most efficient mechanism proposed for producing these heavy sterile singlet states ex-
perimentally is through weak decays of heavy mesons and baryons, as can be seen from the
left-hand diagram in Figure

fig:production-and-decays
7.4, showing some examples of relevant two- and three-body

decays
Gorbunov:2007ak
[286]. These heavy mesons can be produced by energetic protons scattering off the

LBNE neutrino production target and the heavy singlet neutrinos from their decays detected
in the near detector.

10
11

Given a roughly 500-m baseline and a low-energy beam, the LBNE ND can reach the same
value L/Eν ∼ 1 as MiniBooNE and LSND. The large fluxes and the availability of fine-
grained detectors make the LBNE program well suited to search for active-sterile neutrino
oscillations beyond the three-flavor model with ∆m2 at the eV2 scale.

12
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13

Recently, a great deal of interest has been paid to the possibility of studying models of
light (sub-GeV) Dark Matter at low-energy, fixed-target experiments

Batell:2009di,deNiverville:2011it,deNiverville:2012ij,Dharmapalan:2012xp
[303,304,305,306].

High-flux neutrino beam experiments — such as LBNE — have been shown to potentially
provide coverage of DM+mediator parameter space that cannot be covered by either direct
detection or collider experiments.

14
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Additional Far Detector
Physics Opportunities

15

chap-other-goals
16

The deep underground location of LBNE’s LArTPC far detector will expand the range of
science opportunities it can pursue to potentially include observation of solar and other low-
energy neutrinos, dark matter, magnetic monopoles and nucleon-antinucleon transitions.

17
18

Detection of solar and other low-energy neutrinos is challenging in a LArTPC because of
high intrinsic detection energy thresholds for the charged-current (CC) interaction on argon
(>5 MeV). To be competitive, this physics requires either a very low visible-energy thresh-
old (∼1 MeV) or a very large mass (50 kt). However, compared with other technologies, a
LArTPC offers a large cross section and unique signatures from de-excitation photons. Ag-
gressive R&D efforts in low-energy triggering and control of background from radioactive
elements may make detection in LBNE possible, and a large detector mass would make the
pursuit of these measurements worthwhile.

19
20

The LBNE far detector’s large mass and directional tracking capabilities will enable it to
act as a neutrino telescope and search for neutrino signals produced by annihilations of dark
matter particles in the Sun and/or the core of the Earth. Detection of high-energy neutrinos
coming exclusively from the Sun’s direction, for example, would provide clear evidence of
dark matter annihilation

Cirelli:2005gh
[320].

21
22

A liquid argon detector such as LBNE’s far detector is sensitive to the νe component of
the diffuse relic supernova-neutrino flux, whereas water Cherenkov and scintillator detec-
tors are sensitive to the νe component. However, backgrounds in liquid argon are as yet
unknown, and a huge exposure (>500 kt · years) would likely be required for observation.
Given a detector of the scale required to achieve these exposures (50 kt to 100 kt) together
with tight control of backgrounds, LBNE — in the long term — could play a unique and
complementary role in the physics of relic neutrinos.

23

25
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24

conclusion-chap

25

With DOE CD-1 (“Alternate Selection and Cost Range”) approval in hand, the LBNE
Project is working toward its technical design specifications, including detailed costs and
schedule, in preparation for CD-2 (“Performance Baseline”). It should be noted that the
Project already has fully developed schedules for both the CD-1 scope (10-kt far detector
on the surface at the Sanford Underground Research Facility, no near neutrino detector),
and for the full-scope (34-kt far detector located deep underground and near neutrino de-
tector) for the scenario of funding solely from DOE. Partnerships with non-DOE groups
are being sought to enable the construction of LBNE with a near neutrino detector and an
underground far detector mass greater than 10 kt in the first phase.

26

27

Using the current understanding of DOE funding profiles, we outline one plausible long-
term timeline that integrates evolution of LBNE detector mass with development of the
Fermilab accelerator complex (i.e., PIP-II) and contributions from non-DOE partners. Im-
plicit in this timeline is an assumption that agreements with new partners be put in place on
a timescale of three years (by 2017). In this scenario, the milestones that bear on the physics
are as follows:

1. LBNE begins operation in 2025 with a 1.2-MW beam and a 15-kt far detector. (In
such a scenario, a significant fraction of the far detector mass might be provided in
the form of a standalone LArTPC module developed, funded, and constructed by
international partners.)

2. Data are recorded for five years, for a net exposure of 90 kt ·MW · year.

3. In 2030, the LBNE far detector mass is increased to 34 kt, and proton beam power is
increased to 2.3 MW.

4. By 2035, after five years of additional running, a net exposure of 490 kt ·MW · year
is attained.

28

29
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The measurement of the neutrino mass hierarchy and search for CP violation in LBNE will
further clarify the pattern of mixing and mass ordering in the lepton sector and its relation
to the patterns in the quark sector. The impact of exposures of 90 kt ·MW · year (2030)
and 490 kt ·MW · year (2035) for Mass Hierarchy and CP-violation signatures is easily
extracted from Figure

fig:lar-cp-frac
4.16. Should CP be violated through neutrino mixing effects, the

typical signal in LBNE establishing this would have a significance of at least three (2030)
and five standard deviations (2035), respectively for 50% of δCP values (and greater than
three standard deviations for nearly 75% of δCP by 2035). In such a scenario, the mass
hierarchy can be resolved with a sensitivity for a typical experiment of

√
∆χ2 ≥ 6 for 50%

(100%) of δCP by 2030 (2035).

30
31

LBNE represents a world-class U.S.-based effort to address the science of neutrinos with
technologically advanced experimental techniques. By anchoring the U.S. Intensity Frontier
program

Hewett:2014qja
[348], LBNE provides a platform around which to grow and sustain core infras-

tructure for the community. Development of the Fermilab accelerator systems, in particular,
will not only advance progress toward achieving the science goals of LBNE, it will also
greatly expand the capability of Fermilab to host other key experimental programs at the
Intensity Frontier.

32
33

Understanding the fundamental nature of fermion flavor, the existence of CP violation in
the lepton sector and how this relates to the Baryon Asymmetry of the Universe; knowing
whether proton decay occurs and how; and elucidating the dynamics of supernova explo-
sions all stand among the grand scientific questions of our times. The bold approach adopted
for LBNE provides the most rapid and cost-effective means of addressing these questions.
With the support of the global HEP community, the vision articulated in this document
can be realized in a way that maintains the level of excitement for particle physics and the
inspirational impact it has in the U.S. and worldwide.

34
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app-sim
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